Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Braz. j. med. biol. res ; 51(10): e7113, 2018. tab, graf
Article in English | LILACS | ID: biblio-951714

ABSTRACT

Dorsal root ganglia (DRG) neurons regenerate spontaneously after traumatic or surgical injury. Long noncoding RNAs (lncRNAs) are involved in various biological regulation processes. Conditions of lncRNAs in DRG neuron injury deserve to be further investigated. Transcriptomic analysis was performed by high-throughput Illumina HiSeq2500 sequencing to profile the differential genes in L4-L6 DRGs following rat sciatic nerve tying. A total of 1,228 genes were up-regulated and 1,415 down-regulated. By comparing to rat lncRNA database, 86 known and 26 novel lncRNA genes were found to be differential. The 86 known lncRNA genes modulated 866 target genes subject to gene ontology (GO) and KEGG enrichment analysis. The genes involved in the neurotransmitter status of neurons were downregulated and those involved in a neuronal regeneration were upregulated. Known lncRNA gene rno-Cntnap2 was downregulated. There were 13 credible GO terms for the rno-Cntnap2 gene, which had a putative function in cell component of voltage-gated potassium channel complex on the cell surface for neurites. In 26 novel lncRNA genes, 4 were related to 21 mRNA genes. A novel lncRNA gene AC111653.1 improved rno-Hypm synthesizing huntingtin during sciatic nerve regeneration. Real time qPCR results attested the down-regulation of rno-Cntnap lncRNA gene and the upregulation of AC111653.1 lncRNA gene. A total of 26 novel lncRNAs were found. Known lncRNA gene rno-Cntnap2 and novel lncRNA AC111653.1 were involved in neuropathic pain of DRGs after spared sciatic nerve injury. They contributed to peripheral nerve regeneration via the putative mechanisms.


Subject(s)
Animals , Male , Rats , Sciatic Nerve/metabolism , RNA, Messenger/genetics , Peripheral Nerve Injuries/metabolism , RNA, Long Noncoding/metabolism , Ganglia, Spinal/injuries , Neuralgia/metabolism , Molecular Sequence Data , Base Sequence , Gene Expression Regulation , Blotting, Western , Chromosome Mapping , Disease Models, Animal , Transcriptome , Ganglia, Spinal/physiopathology , Ganglia, Spinal/metabolism
2.
Braz. j. med. biol. res ; 50(2): e5286, 2017. tab, graf
Article in English | LILACS | ID: biblio-839258

ABSTRACT

We aimed to study the effect of fentanyl (Fen) preconditioning on cardiomyocyte apoptosis induced by ischemia-reperfusion (I/R) in rats. A total of 120 Sprague Dawley male rats (age: 3 months) were randomly divided into: sham operation group (S group), I/R group, normal saline I/R group (NS group), and fentanyl low, middle, and high dose groups (Fen1: 2 μg/kg; Fen2: 4 μg/kg; Fen3: 6 μg/kg). Heart rate (HR), mean arterial pressure (MAP), left ventricular developed pressure (LVDP), ±dp/dtmax, malondialdehyde (MDA), superoxide dismutase (SOD) activity, creatine phosphokinase-MB (CK-MB), and cardiac troponin-I (cTnI) were measured. Myocardial ischemic (MI) area, total apoptotic myocardial cells, and protein and mRNA expressions of B-cell lymphoma 2 (Bcl-2) and Bax were detected. HR and MAP were higher, while LVDP and ±dp/dtmax were close to the base value in the Fen groups compared to those in the I/R group. Decreased MDA concentration and CK-MB value and increased SOD activity were found in the Fen groups compared to the I/R group, while cTnI concentration was significantly lower in the Fen1 and Fen2 groups (all P<0.05). Myocardial damage was less in the Fen groups compared to the I/R group and the MI areas and apoptotic indexes were significantly lower in the Fen1 and Fen2 groups (all P<0.05). Furthermore, significantly increased protein and mRNA expressions of Bcl-2, and decreased protein and mRNA expressions of Bax were found in the Fen groups compared to the I/R group (all P<0.05). Fentanyl preconditioning may suppress cardiomyocyte apoptosis induced by I/R in rats by regulating Bcl-2 and Bax.


Subject(s)
Animals , Male , Rats , Apoptosis/drug effects , Fentanyl/therapeutic use , Myocardial Reperfusion Injury/prevention & control , Myocytes, Cardiac/drug effects , Protective Agents/therapeutic use , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/pathology , Rats, Sprague-Dawley
3.
Braz. j. med. biol. res ; 50(6): e5868, 2017. tab, graf
Article in English | LILACS | ID: biblio-839308

ABSTRACT

We aimed to investigate the effect of etanercept, a tumor necrosis factor-α (TNF-α) inhibitor, on rat cardiomyocyte hypertrophy and its underlying mechanism. Primary neonatal rat cardiomyocytes were isolated from Sprague-Dawley rats. The model of rat cardiomyocyte hypertrophy was induced by endothelin, and then treated with different concentrations of etanercept (1, 10, and 50 μM). After treatment, cell counts, viability and cell apoptosis were evaluated. The mRNA levels of myocardial hypertrophy marker genes, including atrial natriuretic factor (ANF), matrix metalloproteinase (MMP)-9 and MMP-13, were detected by qRT-PCR, and the expressions of apoptosis-related proteins (Bcl-2 and Bax) were measured by western blotting. The protein levels of transforming growth factor-β1 (TGF-β1), interleukin (IL)-1β, IL-6, leukemia inhibitory factor (LIF) and cardiotrophin-1 (CT-1) were determined using enzyme linked immunosorbent assay (ELISA) kits. In the present study, TNF-α level in cardiomyocytes with hypertrophy was significantly enhanced (P<0.05). Compared to the model group, cell number and viability were significantly increased and ratio of apoptotic cells was reduced by etanercept (P<0.05, P<0.01, or P<0.001). In addition, etanercept remarkably reduced the mRNA levels of ANF, MMP-9 and MMP-13, inhibited the expression of Bax, and increased the expression of Bcl-2 compared to the model group (P<0.05). ELISA results further showed that etanercept lowered the levels of IL-1β, IL-6, LIF and CT-1 but not TGF-β1 compared to the model group (P<0.05). Etanercept may protect rat cardiomyocytes from hypertrophy by inhibiting inflammatory cytokines secretion and cell apoptosis.


Subject(s)
Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cardiomegaly/metabolism , Etanercept/pharmacology , Myocytes, Cardiac/drug effects , Protective Agents/pharmacology , Animals, Newborn , Apoptosis/drug effects , Atrial Natriuretic Factor/metabolism , Cardiomegaly/chemically induced , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Cytokines/drug effects , Disease Models, Animal , Inflammation/metabolism , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 9/metabolism , Myocytes, Cardiac/metabolism , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/metabolism
4.
Braz. j. med. biol. res ; 49(7): e5257, 2016. graf
Article in English | LILACS | ID: biblio-951691

ABSTRACT

Magnesium, a promising biodegradable metal, has been reported in several studies to increase bone formation. Although there is some information regarding the concentrations of magnesium ions that affect bone remodeling at a cellular level, little is known about the effect of magnesium ions on cell gap junctions. Therefore, this study aimed to systematically investigate the effects of different concentrations of magnesium on bone cells, and further evaluate its effect on gap junctions of osteoblasts. Cultures of normal human osteoblasts were treated with magnesium ions at concentrations of 1, 2 and 3 mM, for 24, 48 and 72 h. The effects of magnesium ions on viability and function of normal human osteoblasts and on gap junction intercellular communication (GJIC) in osteoblasts were investigated. Magnesium ions induced significant (P<0.05) increases in cell viability, alkaline phosphate activity and osteocalcin levels of human osteoblasts. These stimulatory actions were positively associated with the concentration of magnesium and the time of exposure. Furthermore, the GJIC of osteoblasts was significantly promoted by magnesium ions. In conclusion, this study demonstrated that magnesium ions induced the activity of osteoblasts by enhancing GJIC between cells, and influenced bone formation. These findings may contribute to a better understanding of the influence of magnesium on bone remodeling and to the advance of its application in clinical practice.


Subject(s)
Humans , Osteoblasts/drug effects , Magnesium/pharmacology , Time Factors , Enzyme-Linked Immunosorbent Assay , Cell Communication/drug effects , Cell Survival/drug effects , Cells, Cultured , Reproducibility of Results , Gap Junctions/drug effects , Cell Proliferation/drug effects , Ions/pharmacology , Magnesium/chemistry
5.
Braz. j. med. biol. res ; 49(6): e5273, 2016. tab, graf
Article in English | LILACS | ID: biblio-951687

ABSTRACT

The present study tested the hypotheses that i) transforming growth factor beta 1 (TGF-β1) enhances differentiation of rat bone marrow mesenchymal stem cells (MSCs) towards the cardiomyogenic phenotype and ii) intramyocardial implantation of the TGF-β1-treated MSCs improves cardiac function in heart failure rats. MSCs were treated with different concentrations of TGF-β1 for 72 h, and then morphological characteristics, surface antigens and mRNA expression of several transcription factors were assessed. Intramyocardial implantation of these TGF-β1-treated MSCs to infarcted heart was also investigated. MSCs were initially spindle-shaped with irregular processes. On day 28 after TGF-β1 treatment, MSCs showed fusiform shape, orientating parallel with one another, and were connected with adjoining cells forming myotube-like structures. Immunofluorescence revealed the expression of cardiomyocyte-specific proteins, α-sarcomeric actin and troponin T, in these cells. The mRNA expression of GATA4 and Nkx2.5 genes was slightly increased on day 7, enhanced on day 14 and decreased on day 28 while α-MHC gene was not expressed on day 7, but expressed slightly on day 14 and enhanced on day 28. Transmission electron microscopy showed that the induced cells had myofilaments, z line-like substances, desmosomes, and gap junctions, in contrast with control cells. Furthermore, intramyocardial implantation of TGF-β1-treated MSCs to infarcted heart reduced scar area and increased the number of muscle cells. This structure regeneration was concomitant with the improvement of cardiac function, evidenced by decreased left ventricular end-diastolic pressure, increased left ventricular systolic pressure and increased maximal positive pressure development rate. Taken together, these results indicate that intramyocardial implantation of differentiated MSCs enhanced by TGF-β1 improved cardiac function in heart failure rats.


Subject(s)
Animals , Male , Bone Marrow Transplantation/methods , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/drug effects , Heart Failure/surgery , Time Factors , RNA, Messenger/analysis , Cell Differentiation , Polymerase Chain Reaction , Reproducibility of Results , Treatment Outcome , Myosin Heavy Chains/analysis , Myocytes, Cardiac/drug effects , Microscopy, Electron, Transmission , GATA4 Transcription Factor/analysis , Homeobox Protein Nkx-2.5/analysis
6.
Indian J Cancer ; 2015 Dec; 52(6)Suppl_2: s69-s74
Article in English | IMSEAR | ID: sea-169243

ABSTRACT

BACKGROUND: To examine the safety and clinical efficacy of computed tomography (CT)‑guided radioactive iodine‑125 (125I) seeds implantation for patients with unresectable pancreatic cancer. MATERIALS AND METHODS: A group of 26 patients with pathologically confirmed unresectable pancreatic cancer underwent percutaneous CT‑guided 125I seeds implantation. Part of them received transarterial chemotherapy and/or percutaneous transhepatic cholangial drainage before or after seeds implantation. The primary endpoints were the objective response rates, local control rates, and overall survival. RESULTS: CT scan 2 months after treatment revealed complete response (CR) in 8 patients, partial response (PR) in 9 patients. Overall response rate (CR + PR) is 65.38%. Local control rate was 88.46%. Median survival of the whole group was 15.3 months, whereas for Stage III and IV was 17.6 and 9.1 months, respectively. The estimated 1‑year survival was 30.77%. CONCLUSIONS: We consider CT‑guided 125I seeds implantation as a safe, effective, uncomplicated treatment for unresectable pancreatic cancer.

7.
Braz. j. med. biol. res ; 48(4): 286-291, 4/2015. tab, graf
Article in English | LILACS | ID: lil-744366

ABSTRACT

This study aimed to determine the effects of different concentrations of propofol (2,6-diisopropylphenol) on lipopolysaccharide (LPS)-induced expression and release of high-mobility group box 1 protein (HMGB1) in mouse macrophages. Mouse macrophage cell line RAW264.7 cells were randomly divided into 5 treatment groups. Expression levels of HMGB1 mRNA were detected using RT-PCR, and cell culture supernatant HMGB1 protein levels were detected using enzyme-linked immunosorbent assay (ELISA). Translocation of HMGB1 from the nucleus to the cytoplasm in macrophages was observed by Western blotting and activity of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in the nucleus was detected using ELISA. HMGB1 mRNA expression levels increased significantly in the cell culture supernatant and in cells after 24 h of stimulating RAW264.7 cells with LPS (500 ng/mL). However, HMGB1 mRNA expression levels in the P2 and P3 groups, which received 500 ng/mL LPS with 25 or 50 μmol/mL propofol, respectively, were significantly lower than those in the group receiving LPS stimulation (P<0.05). After stimulation by LPS, HMGB1 protein levels were reduced significantly in the nucleus but were increased in the cytoplasm (P<0.05). Simultaneously, the activity of NF-κB was enhanced significantly (P<0.05). After propofol intervention, HMGB1 translocation from the nucleus to the cytoplasm and NF-κB activity were inhibited significantly (each P<0.05). Thus, propofol can inhibit the LPS-induced expression and release of HMGB1 by inhibiting HMGB1 translocation and NF-κB activity in RAW264.7 cells, suggesting propofol may be protective in patients with sepsis.


Subject(s)
Animals , Mice , Anesthetics, Intravenous/pharmacology , Cell Nucleus/drug effects , HMGB1 Protein/drug effects , Macrophages/drug effects , Propofol/pharmacology , RNA, Messenger/drug effects , Active Transport, Cell Nucleus , Anesthetics, Intravenous/administration & dosage , Blotting, Western , Cell Line , Cell Nucleus/metabolism , Enzyme-Linked Immunosorbent Assay , Gene Expression/drug effects , HMGB1 Protein/genetics , HMGB1 Protein/metabolism , Lipopolysaccharides , Macrophages/metabolism , NF-kappa B/drug effects , NF-kappa B/metabolism , Propofol/administration & dosage , Random Allocation , Real-Time Polymerase Chain Reaction , RNA, Messenger/metabolism
8.
Indian J Cancer ; 2014 Mar; 51(7_Suppl): s77-s81
Article in English | IMSEAR | ID: sea-158220

ABSTRACT

OBJECTIVE: Lung cancer has become the primary cause of cancer‑related death now. New therapies targeting the molecular regulatory machinery were required imperatively. MicroRNAs and long noncoding RNAs can respectively or cooperatively function as oncogenes or tumor suppressor genes in human cancers. The present study identified that miR‑449a was down‑regulated in tissue of human lung cancer. In this study, we aimed to investigate the function of miR‑449a in NL9980 and L9981 lung carcinoma cells lines and the relationship with lncRNA nuclear enriched abundant transcript 1 (NEAT1). MATERIALS AND METHODS: miR‑449a was profiled in several lung carcinoma cell lines by quantitative reverse transcription‑polymerase chain reaction RT‑PCR. We analyzed the effects of miR‑449a overexpression on proliferation, apoptosis and cell cycle in L9981 cells. The regulatory relationship between miR‑449a and NEAT1 was predicted in silico and further studied by miR‑449a inhibitor and mimics assay. RESULTS: miR‑449a was expressed in four cell lines, which we selected, however miR‑449a was in high level in NL9980 and in low level in L9981 (P < 0.05). When the miR‑449a was the overexpression in L9981 cells, the cell growth was suppressed, and the apoptosis cells were promoted compared with the control group (P < 0.05). The G1/G0 became longer and S, G2/M became shorter (P < 0.05) by miR‑449a overexpression. Further study of the interaction between miR‑449a and NEAT1 show that NEAT1 was up‑regulated when cells were transfected with miR‑449a inhibitor, and NEAT1 was down‑regulated when cells transfected with miR‑449a mimics. CONCLUSIONS: Our data indicate that miR‑449a may function as a suppressor of lung cancer, and affects the expression of NEAT1 in lung cancer cells.

9.
West Indian med. j ; 62(8): 698-700, Nov. 2013.
Article in English | LILACS | ID: biblio-1045735

ABSTRACT

Liver cancer is the second most frequent cause of cancer death in men and the sixth leading cause of cancer death in women. Hepatocellular carcinoma (HCC) represents the major subtype in liver cancer and its five-year survival rate remains very poor. Sorafenib, a molecular targeted therapeutic agent, was the first drug approved for the treatment of patients with HCC. However, the clinical response of sorafenib was seriously limited by drug resistance. Autophagy is an evolutionarily conserved mechanism among all eukaryotes. Recently, many studies have indicated that autophagy can be activated as a cellular protective mechanism in many tumour cells. Thus, we hypothesized that autophagy may play an important role in resistance to sorafenib in hepatocellular carcinoma. Although the exact role of autophagy in the sorafenib resistance of HCC is still complex and further studies are needed to be proven, at least it suggests that autophagy may be a new therapeutic target for the sorafenib resistance of HCC.


El cáncer de hígado es la segunda causa de muerte más frecuente por cáncer en los hombres y la sexta causa de muerte por cáncer en las mujeres. El carcinoma hepatocelular (CHC) representa el subtipo principal en el cáncer de hígado, y su tasa de supervivencia de cinco años sigue siendo muy pobre. El sorafenib, un agente terapéutico dirigido selectivamente a moléculas especificas, fue el primer medicamento aprobado para el tratamiento de pacientes con CHC. Sin embargo, la respuesta clínica de sorafenib estaba seriamente limitada por la resistencia al medicamento. La autofagia es un mecanismo evolutivamente conservado entre todos las eucariotas. Recientemente, muchos estudios han indicado que la autofagia puede activarse como mecanismo de protección celular en muchas células tumorales. Por consiguiente, postulamos la hipótesis de que la autofagia puede desempeñar un papel importante en la resistencia del carcinoma hepatocelular al sorafenib. Aunque el papel exacto de la autofagia en la resistencia al sorafenib del CHC es aún complejo y se necesitan estudios adicionales para ser probado, al menos se sugiere que la autofagia puede ser una nueva meta terapéutica frente a la resistencia del sorafenib en el CHC.


Subject(s)
Humans , Autophagy , Sorafenib/therapeutic use , Liver Neoplasms/drug therapy , Drug Resistance
10.
West Indian med. j ; 60(6): 666-668, Dec. 2011.
Article in English | LILACS | ID: lil-672831

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most common malignant tumours and its five-year survival rate remains low. Autophagy is a catabolic process conserved among all eukaryotes ranging from yeast to mammals. Recently, many studies show that tumour cells can utilize autophagy as a cellular defence mechanism when facing metabolic stress. Thus, we hypothesize that autophagy may play an important role in the resistance of hepatocellular carcinomas to therapy. Although the exact role of autophagy on tumour cells is still complex and further studies are needed to prove the impact of autophagy on HCC, it suggests that autophagy may be a new therapeutic target for the resistance to therapy of HCC.


El carcinoma hepatocelular (CHC) es uno de los tumores malignos más comunes, y su tasa de super-vivencia a los cinco años sigue siendo baja. La autofagia es un proceso catabólico conservado en todos los eucariotas, que abarca desde las levaduras hasta los mamíferos. Recientemente, numerosos estudios han demostrado que las células tumorales pueden utilizar la autofagia como un mecanismo celular de defensa frente al estrés metabólico. De este modo, sostenemos la hipótesis de que la autofagia puede desempeñar un papel importante en la resistencia de los carcinomas hepatocelulares a la terapia. Aunque el papel exacto de la autofagia en las celulares tumorales sigue siendo complejo, y se requieren más estudios a fin de probar el impacto de la autofagia en el CHC, hay indicios de que la autofagia puede ser un nuevo objetivo terapéutico para la resistencia a la terapia del CHC.


Subject(s)
Animals , Humans , Antineoplastic Agents/pharmacology , Autophagy/drug effects , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/physiopathology , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/physiology , Liver Neoplasms/drug therapy , Liver Neoplasms/physiopathology
11.
Horiz. méd. (Impresa) ; 2(1/2): 64-69, dic. 2002. ilus
Article in Spanish | LILACS, LIPECS | ID: lil-677683

ABSTRACT

Se evalúo in vitro la actividad antibacteriana de extractos de Caesalpinia spinosa "tara" y Eucalyptus sp. "eucalipto" utilizando cepas bacterianas Gram positivas (Staphylococcus aureus y Bacillus subtilis) y Gram negativas (Escherichia coli, Klebsiella sp. y Shigella flezneri). Se utilizó como solvente de extracción una mezcla de alcohol-acetona (1:1) y la actividad biológica de los extractos obtenidos se evaluó mediante la técnica de difusión en disco. La cáscara del fruto de Caesalpini spinosa y las hojas del Eucalyptus sp. mostraron una actividad selectiva sobre las bacterias Gram positivas evaluadas.


The antibacterian activity of extract of Caesalpinia spinosa and Eucalyptus sp. "eucalipto" was valued using bacterials capes gram positives (Staphylococcus aureus and Bacyllus subtilis) and gram negatives (Escherichia coli, Klebsiella sp, Shigella flexneri). For the investigation was used as extraction solvent a mixture of aIcohol-acetona (1:1), the biological activity of the obtained extracts was valued using the disc diffusion technique. The fruit peel of Caesalpinia spinosa and the leaves of Eucalyptus sp show a selective activity over the valued grampositives bacteriums.


Subject(s)
Anti-Bacterial Agents , Gram-Positive Bacteria , Caesalpinia , Eucalyptus , Plant Extracts/therapeutic use , Staphylococcus aureus
SELECTION OF CITATIONS
SEARCH DETAIL